منابع مشابه
On quasi-baer modules
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
متن کاملOn Commutative Reduced Baer Rings
It is shown that a commutative reduced ring R is a Baer ring if and only if it is a CS-ring; if and only if every dense subset of Spec (R) containing Max (R) is an extremally disconnected space; if and only if every non-zero ideal of R is essential in a principal ideal generated by an idempotent.
متن کاملA note on p.q.-Baer modules
A module MR is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal submodule of R is generated by an idempotent. Let R be a ring. Let α be an endomorphism of R and MR be a α-compatible module and T = R[[x;α]]. It is shown that M [[x]]T is right p.q.-Baer if and only if MR is right p.q.-Baer and the right annihilator of any countably-generated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2007
ISSN: 1027-5487
DOI: 10.11650/twjm/1500404651